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Abstract—Two new methods of introducing non-linear derivative boundary conditions for A.D.IL
methods which solve the heat conduction equation in two space variables are suggested. The first method
is fast, but less accurate than the second method with respect to the time variable. The second method has
the same order of accuracy as the Crank—Nicolson method. The second method is most suited for
recalculation of the previous time step with a new set of boundary conditions. The first method allows
non-rectangular regions. The second method becomes less efficient if extended to non-rectangular regions.

NOMENCLATURE
a,b,c, weight factors;
L. a.4, hy, By, By, B, by, RS, weight factors;
A,D, matrixes;

u, dependent variable;

X, vector;

x,y, coordinates;

t time variable;

n, outward unit normal to surface;

hk, steplength in x and y directions
respectively;

N,M, N+1and M+ 1 are the number of
gridpoints in the x and y directions
respectively ;

kAt kAt . . ..
ry= E ry= R dimensionless quantities;

A,B,E, E, F,F,, boundary values;
P, point at the boundary;
F, fictitious value.

Greek symbols
K, thermal diffusivity ;
A, thermal conductivity;
o, convective heat transfer coefficient ;
&, emissivity ;
o, Stefan—Boltzmann constant ;

At,  time step.

Index
ij, referring to nodpoints;
n, (n+1)*, (n+1), time levels;
k, referring to boundary point.

Operators
82,02, central difference operators in x and y
directions respectively.

1. INTRODUCTION
THE PROBLEM of determining the temperature distri-
bution in solids during heating or cooling is an
mmportant one. Two examples are the process control
of reheating furnaces and the cooling of material

during hot rolling. Mathematically the problem is
given as an initial boundary value problem for the
heat conduction equation:

du . .
pe, i dividgradu), inQ
]
—A—=afu—~uy)+oe(u*—uj), ondQforalle,
on

u(x, 0) = initial temperature distribution, where 8Q is
the boundary of the region Q.

Even if we assume constant coefficients the
problem stated above is not solvable analytically,
due to the non-linearity in the boundary condition.
We shall assume that x is a two dimensional vector
and that Q is a rectangular region unless otherwise
stated. We also assume for notational reasons that
the coefficients are constants. We note that in the
algorithms non-linear coefficients are handled by
letting for instance the thermal diffusivity x assume
the constant value x{uy), which may differ for
different nod points. Iterations are then possible.

2. THEORETICAL DEVELOPMENT

2.1. First A.D.I. scheme
Consider the heat conduction equation:

du [O*u
— = e ——+3)2’*;), (la)

=K
ot a2

in the region R given by Fig. 1 with the initial
condition

u(x, y,0) = constant, (x,y)eR, (1b)
and the boundary condition
u
— A — = afu—uy) +oe(u® - ul),
on
on dR forallt, (lc)

where JR is the boundary of R.
Let hk denote the mesh size for x and y
respectively ;

x;=1ih i=0,....N and y;=jk, j=0,... M.

Let At denote the mesh size for t; 1" = nAt.
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w '\ we get:
L | N8 Grid ine |, Fo gt 17
N ; e — g(A—up) +oe(A® —ud),  (6)
VL. ] 2h
T | ‘
— where u’" V" = a,;A+b,;B+cq; and u, is evaluated
Iy at th / poi i 1 n+%. This i
- Yo M| A srart grid tne at the boundary point at time level n+%. This choice

Nl

FiG. 1. Showing the region R used in describing the first
A.D.L Scheme (k = h)A = u(P).

The original A.D1. method of Peaceman and
Rachford [1] takes the form:

(1—4r eDuli™ Y = (143,00 (2a)
(=Y, 0hny = (1 43r 0Duft ', (2b)
where W, = u{x;,y;1")  are known for all

(x»¥;)¢ RUCR. The operators @7 and o are the
usual central difference operators in the x and y
directions respectively, and r, = kAt/h?, 1y = kAt/k>.
The quantities u?*!" can be considered as in-
termediate solutions. If we add equations (2a) and
(2b) to eliminate (1 + %7 &2)uf* 7, the result is:

ol (3)

u Y = (1,8l + 31—
Thus we obtain by taking equations (2a) and (3) an
A.D.I. schemc which requires less arithmetic oper-
ations as noted by Varga [2] and Fairweather and
Mitchell [3]. The boundary initial value problem
(la—c) is equivalent to a Dirichlet problem where the
boundary condition is:

u () = (x; yj)edR foralle, (4)

and the gf; = g(x; y,.t") are to be determined. We use
equation (2a) at each interior grid point along a
horizontal grid line which has a vertical boundary at
each end. Let 4 and B denote the boundary values at
the left and right boundary point respectively. We
obtain a tridiagonal system of equations Au"*!"
=D where D=(d,,....dy_,). We add two more
equations u"*'" = A4 at the left boundary point and
u* V" = B at the right boundary point. We solve
this new tri-diagonal system of equattons with three
different right hand sides corresponding to the
vectors (1,...,0), (0,..., 1) and (0,d,,...,dv_,0). We
obtain three solution vectors a = (¢,), b= (b;)and ¢
=(c,), i=0,....,N. As all equations are linear we
derive the solution as:

Wl Y = azA+byB+cy (5)

_(](.\'i, y_i’ t),

where j is the number of the grid line. We use the
boundary condition (l¢) to find the values of 4 and
B. Figure 1 shows the left boundary point with the
fictitious value F. The boundary condition is
approximated by a central difference operator. Thus

of time introduces an error as the solution u™" 'tV is
not equal to the solution «"*''%. By applying
cquation (2a) at the boundary point (i =0) and
letting F =u"{}” we derive an equation with the
two unknowns 4 and B. A similar procedure at the
right boundary point gives another equation in the
two unknowns 4 and B. We solve this system of
non-linear equations by, e.g., the method of Newton.
Now we perform the sweeps in the x-direction up to
and including the grid line j, in Fig. 1. The boundary
condition at this grid line is approximated by, as the
outward unit normal is [/ \/2 (=1,1). h=k in this
case for simplicity

_2 - —u
\/Eh 2 0~
A+T, *
+as(( 5 1) —ug), (7
where
A = u(P), Tj:alle+b1“B+c“\,

_ Ln+ 1)
and T, =u{;7 1.

T, = ulgt o)
T, and T, are known. u, is evaluated at the point P.
We apply equation (2a) in the same way as above.
Thus we have one equation for the unknowns A and
B. The same method is applied at the right boundary
point. In a similar way we perform horizontal swecps
for grid lines below the starting grid line. The botton
and top grid lines are swept by introducing fictitious
values u?_, and ufy ., respectively. To obtain the
solution ¥” ! we use equation (3) along vertical grid
lines and introduce the boundary conditions in a
similar way as above. Note that the quantities
(1+%r, 023 are already calculated.

2.2. Second A.D.I. scheme

Consider a rectangular region with mesh size h, &
in the x and y directions rcspectively. We perform
sweeps in the x direction along each horizontal grid
line with the aid of equation (2a). At the upper and
lower boundary we introduce fictitious values 1y, 4,
and u"_, respectively and use the boundary con-
dition to eliminate them. Let 4; and B; denote the
unknown boundary values at the left and right
boundary points at the time level (n+ 1)*. For each
horizontal grid line we obtain coefficients a,,b;,c; as
before. Hence we can write

it =gy A+ by B,

i=0,...,N,j=0,. M.

Now we use equation (3) at the vertical grid lines
corresponding to i = 1 and i = N—1. We derive the
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following system of equations:
04+ 00uf + 51 =4 00u !
= (ug?ﬂ} )= aij(%(l +%725§)“3;+%(1 ——%rzé‘f)u?);l)
+bij(%(1 +%"28§)u7\'j+%(1 _%"263)’47\; l)+Cij,
j=1....M—=1. (8)

We add two more equations 53! = E, and u}},!
= E, to the system corresponding to i=1 and
Wittty = Fy, uitY, = F, to the system correspond-
ing to i = N—1. By solving the system (i = 1) with
respect to uj' for the 2x (M +1)+3 right hand
vectors given by the (M +1x 2M + 5) matrix D. We
derive expressions for ]} '. The elements in the kth
column of D for O < k < M are given by:

dop = dyy = 0, djk = %au(l “%"255)‘43;1:
j=L...,M-1 where ‘=1 and
“’631 = =uwpll =l == “'(‘).J\rl1 =0
for i=0,...,M.

The elements d;, for M+1 <k < 2M+2 are given
by do, = dui =0,

dy = 3by;(1 =300t j=1,... . M—1,
where
Wit =lwtt ==l =t = =l =0,
i=0,..., M.

The 2M + 3 and 2M +4 columns in D correspond to
the vectors (1,...,0) and (0,...,1) respectively. The
last column in D is given by the vector with
elements:

dl = dM = 0,
d; = —3(1+5r,00 4+ 3a, (1 +3r,82)ul,
+%blj(1 "'”%"z%)“.’ﬁ*‘ﬁ;-

Solving this system of equations enables us to write:
M Af
“?;l = Z g;’k“g;x -+ Z fk,,-uf{ii‘
k=0 k=0

+h1jE1+hsz2+h3j, (9)

where g,; and f; are the solution matrices cor-
responding to the first M +1 columns in D and the
following M +1 columns in D respectively. by, hy;
and h;; are the solution vectors corresponding to the
last three columns in D respectively. In the same way
we solve the system of equations corresponding to
the grid line i = N — 1. Hence we are able to write:

M M
n+1 ot 7 n+1
uith; = ) gl '+ Y Sl
k=0 k=0

+hH i+ Ry P+ 05 (10)

Note in this particular case, when the coefficients are
constants, we would only have to solve the last
system of equations for the last column in the matrix
D. The remaining problem is to determine the
boundary values u{7!, ui}', j=0,...,M and u}}?,
ulyt, uitho and oi7Y . That is 2M +6 unknowns.
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The equations are to be determined from the
boundary conditions at the above mentioned points.
We only describe the left part of the boundary. The
right part is treated in a similar way. We distinguish
between corner points, left vertical boundary and the
upper and lower boundary points.

2.2.1. Boundary point on the left vertical boundary
except corner points. We use the heat conduction
equation at the boundary point approximated by

Wy = by 2u5) a0 )
+3(r  02ul+ry02up ), (11)
where the fictitious values w«'%} and u",; are
determined from the boundary condition (Ic) ap-
proximated by
— Ay j—uy ;) = 2ha(ug; — ug) + 2hoe(ug;— ug)
for " and "*1,

As

n+l

M M
Uy Y guer Y it
-0 k=0

+hyE+hyEy+hy;

k

we have derived an equation only containing the
unknown boundary values at time level n+1.

2.2.2. Corner points. Consider the upper left
corner, the lower corner is treated similarly. As
above we use the heat conduction equation at the
corner point. The four fictitious values u"'},, u“ 4,
uliey and ufy, ., are determined from the boundary
conditions:

— At ng =ty ar) = 2hatltigr — ug) + 2hoe(ugy — ug)
and

= AUgps 1~ Uonr-1) = 2ha(tig s — the) + 2hoe(ug
~ug)
fort"and "t

Hence we have an equation only containing the
unknown boundary values at time level n+1.

2.2.3. Boundary points on the upper and lower
boundary. We consider only the upper left boundary
point; the lower is treated in the same way. We
apply (3) at the boundary point {(x,,y,) and
rearrange to obtain (1—4r,8%)uls! = 2uf (1
-+4r,07)u} . The fictitious values u,,; and w7},
are determined from the boundary condition (lc)
approximated by
AUy —Uga-1)

= 2kot(tty gy — Ug) + 2kae(ut sy —ul)

for t"and "*!. The boundary value
Wl = ay UGV + by oom
from equation (2a). Equation (3) applied at the two
upper corner points (see above) gives
Y = (=3 0hu ' + (L +4r, 02l
fori=0and N.

The fictitious values introduced are known from the
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equations at the corner points. We have another
equation only containing the unknown boundary
values at time level

M
+1 +1
n+1asuiy = Z Gt -1 Hox
K=o
M
+1
+ Z FAYERTIV AR FIVERY O TPV P S ST
k=0

Hence we have 2(M —1)+4 +4 equations in the 2M
+6 unknown boundary values. After solving this
non-linear system of equations we use equation (3)
at each corner point together with the boundary
equations to obtain the boundary values ugyq, gy,
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by Newton’s method in the ADII and the
Crank—Nicolson schemes. (A.DI12 used for this
purpose a standard IMSL-library subroutine ZSYS-
TEM 4.) It is most likely that this general routine is
slower than the method of Newton in the test cases.
On the other hand Newton’s method requires a
better starting value to converge. The following tests
were run. All data are in the S.1. system.

A. Accuracy test

The input data were:
Thermal diffusivity = thermal conductivity = 1, sur-
rounding media temperature = 0, initial temperature
distribution = 1, width = height = 1. The boundary

Table 1. Maximal error x 10? for different methods compared with the analytical solution

Method of solution

Time x 10° Explicit ADI! Crank-Nic. ADI2
(s} A B A A B A B
0.0595 — 5.352 - 2.461 — 1.505 - 1.504
0.119 - 2.653 — 1.692 - 1.068 1.067
0.178 e 2.856 - 1.264 0.808 . 0.807
0.232 10.157 2.372 4.578 1.040 2744 0.667 2.743 0.667
0.465 4.681 1.948 3.072 0.614 1.908 0.398 1.907 0.397
0.697 4.652 1.760 2217 0.467 1.389 0.296 1.387 0.296
0929 3.760 1.633 1.723 0.386 1.079 0.244 1.078 0.243
1.394 3.253 1.463 1.415 0.296 0.750 0.188 0.749 0.187
6.040 1.815 - 0.383 0.211 — 0.208 s
11.614 1.549 - 0.285 0.134 0.128 —
Table 2. Comparison of computing time for different methods
Method of solution
Explicit ADIL1 Crank-Nic. ADIL2
A B A B A B A B
Number of
iterations 540 2084 6 6 6 6 6 6
Computing
time (s} 321 3474 0.22 0.71 8.61 83.08 15.45 15208

Uyo and uy,, at time level (n+1)*. Equation (3) is
then used to obtain the remaining vertical boundary
values at time level (n+1)* for i=0, N and
j=1,...,M—1. Thus we know u"*'" for every
interior point as

n+ 1) (n+1)* (n+ 1) .
uj; = quugi b oy

The coefficients a,;, b;; and ¢;; have already been
determined by equation (5). The values u}* ! for
i=2,...,N=2,j=0,...,M are determined in the
same way as the A.D.I. method L.

Note that if we want to recalculate a time step
with a different set of boundary conditions we only
need to recalculate the solution to the 2M+6
boundary conditions equations and so on.

3. NUMERICAL RESULTS

The two A.D.IL schemes together with an explicit
scheme and the Crank—Nicolson scheme were im-
plemented on an IBM 370/165 computer. The so-
lutions of non-linear system of equations was done

conditions are given by a =1, ¢ = 0. In the A case
11x11 nod points were used with a time step
=0.23229 x 10~2. In the B case 21 x 21 nod points
were used with a time step = 0.59488 x 1077, The
solutions for the different methods were compared
with the analytical solution. The results are shown in
Table 1.

B. Computational speed

The input data were:
Thermal diffusivity = 6 x 1079, thermal conductivity
= 30, ambient temperature = 1600, initial tempera-
ture distribution = 300, width = height = 0.05. The
boundary conditions are given by &« = 20,6 =0.7. In
the A case 11 x 11 nod points were used and in the B
case 21 x 21 nod points. The computation stopped
when the centre temperature was 1550. This heating
time was compared between the different methods to
ensure the same accuracy. The results are shown in
Table 2.
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Table 3. Comparison of computing time for different methods for the
case with simuiation of 100 different boundary

Method of solution
Explicit

ADII

Crank—Nic. A.DI.2

Computing

time (s) 111.02

26.34

91.73 50.17

C. Simulation of different boundary conditions
The input data were:

Thermal diffusivity = 6 x 107°, thermal conductivity
= 30, ambient temperature = 300, initial tempera-
ture distribution = 1550, width x height = 0.1 x 0.025.
The boundary conditions are given by ¢ = 0.7 and
o = 50 on vertical boundaries and o« =20, ¢ =0.7,
elsewhere. 21 x 6 grid points were used. This boundary
condition was recalculated 100 times. The time step for
A.D.1.2 and Crank-Nicolson was 240, The time step for
A.D.I.1 was chosen to 40 i.e. 6 iterations. The explicit
method choosesitsown timestep. Theresultsareshown
in Table 3.

4, CONCLUSIONS

The different tests show that the A.D.I.1 method
seems to be the optimum of accuracy and com-
putational speed in most cases. The slowness of

A.D.1.2 method is presumably due to the non-linear
equation solver. The A.D.I.2 method’s advantage of
recalculating boundary conditions is more useful to
problems with many nod points.
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NOUVEL OUTIL POUR LES CONDITIONS AUX LIMITES DIFFERENTIELLES NON
LINEAIRES DANS LES METHODES A.D.I.

Résumé—On propose deux nouvelles méthodes pour introduire des conditions aux limites différentielles

non linéaires dans des methodes A.D.I, pour résoudre I'équation de conduction thermique a deux

variables d’espace. La premiére méthode est rapide mais moins précise que la seconde, par rapport a la

variables de temps. La seconde méthode est du méme ordre de précision que la méthode de

Crank—-Nicolson et elle est plus indiquée pour le calcul du pas de temps avec un nouveau systéme de

conditions aux limites. La premiére méthode convient aux domaines non rectangulaires tandis que la
seconde est moins efficace dans ce cas.

NEUE RECHNERISCHE ERFULLUNG VON NICHTLINEAREN ABLEITUNGEN IN
RANDBEDINGUNGEN BEI A.D.I-METHODEN

Zusammenfassung—Zwei neue Methoden werden zur Einfilhrung von nichtlinearen Ableitungen in
Randbedingungen bei A.D.I.-Methoden vorgeschlagen, welche die Wiarmeleitungsgleichung mit zwei
Ortsvariablen 16sen. Die erste Methode ist schnell, aber weniger genau als die zweite in bezug auf die
Zeitvariable. Die zweite Methode hat denselben Genauigkeitsgrad wie die Crank-Nicolson-Methode. Die
zweite Methode ist am geeignetsten zur Nachrechnung des vorausgegangenen Zeitschritts mit einem
neuen Satz von Randbedingungen. Die erste Methode ist flir nicht-rechteckige Gebiete anwendbar. Die
zweite Methode wird weniger leistungsfiihig, wenn sie auf nicht-rechteckige Gebiete ausgeweitet wird.

HOBBII CTIOCOB VICOJIB3OBAHWUA HEJMHENMHBIX TPAHHYHBIX YCIOBHH,
COAEPXAMUX MPOU3BOAHBIE, B ADI METOJE

Annorauns — IlpefiokeHbl ABa HOBBIX Criocoba MCMONb3OBAHHS HENMHEHHBIX TPAHMMHLIX YCTOBHIL,

COAEPXKALLUHX  APOH3IBOAHbIE, B ADI Merozse peiieHHs ZBYXMEPHOTO yPaBHEHHS TEMJIONPOBOJHOCTH.

[epsoiii sBnsercn Gonee GLICTPBIM, HO MEHEE TOWHBIM, YEM BTODOH, NPH ONPEACICHUH BPEMEHHOMR

3aBHCHMOCTH. [1o TOMHOCTH BTOpOit cnoco6 anamoruyed Metony Kpauka-Huxonbcowa. Ero nywie

BCEFO MCIIO/Ib30BATE IUIA NepecuéTa NPeAbLIYIIEro BPEMEHHOIO IUara ¢ HOBHIMH TDAHMMHBLIMH YCJ0-

BHsiMH. TlepBbiii CnOCO6 MOXHO NPHMEHATE AJIA HENPSAMOYFONLHBIX obnacTell, /18 KOTOPHIX BTOPOH
crocob sABseTcs MeHee dGdeKTHBHBIM.



